The simple classical groups of dimension less than 6 which are (2,3)-generated
نویسندگان
چکیده
منابع مشابه
Kleinian groups of small Hausdorff dimension are classical Schottky groups
Let H be the hyperbolic 3-space. A subgroup Γ of PSL(2,C) = Iso(H) is called a Kleinian group if it is discrete. Let x ∈ H. The orbit of x under action of Γ is denoted by Γx. The limit set ΛΓ of Γ is definited as ΛΓ = Γx ∩ ∂H. By definition, ΛG is smallest closed Γ-invariant subset of ∂H. The group Γ is called second kind if ΛΓ 6= ∂H, otherwise it is said to be first kind. The set ΩΓ = ∂H 3 − Λ...
متن کاملfinite simple groups which are the products of symmetric or alternating groups with $l_{3}(4)$
in this paper, we determine the simple groups $g=ab$, where $b$ is isomorphic to $l_{3}(4)$ and $a$ isomorphic to an alternating or a symmetric group on $ngeq5$, letters.
متن کاملCubulating Random Groups at Density Less than 1/6
We prove that random groups at density less than 1 6 act freely and cocompactly on CAT(0) cube complexes, and that random groups at density less than 1 5 have codimension-1 subgroups. In particular, Property (T ) fails to hold at density less than 1 5 . Abstract. Nous prouvons que les groupes aléatoires en densité strictement inférieure à 1 6 agissent librement et cocompactement sur un complexe...
متن کاملmaximal subsets of pairwise non-commuting elements of p-groups of order less than p^6
let $g$ be a non-abelian group of order $p^n$, where $nleq 5$ in which $g$ is not extra special of order $p^5$. in this paper we determine the maximal size of subsets $x$ of $g$ with the property that $xyneq yx$ for any $x,y$ in $x$ with $xneq y$.
متن کاملmaximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$
let $g$ be a non-abelian group of order $p^n$, where $nleq 5$ in which $g$ is not extra special of order $p^5$. in this paper we determine the maximal size of subsets $x$ of $g$ with the property that $xyneq yx$ for any $x,y$ in $x$ with $xneq y$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2015
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498815501480